Научные отчеты, том 12, Номер статьи: 15119 (2022) Цитировать эту статью
746 Доступов
1 Цитаты
Подробности о метриках
В этом исследовании эффекты внекорневого внесения селена (Se) в различных концентрациях были изучены на основе изменений нескольких параметров, таких как концентрация азота, фосфора и калия (NPK) в почве и растении овса, урожайность овса, содержание органических веществ в почве и овсе. почва (OMS), неферментативные антиоксиданты и общее содержание фенола. В соломе и семенах овса также оценивали концентрации хрома (Cr), железа (Fe), марганца (Mn), цинка (Zn) и меди (Cu). Исследование соответствует местным и национальным рекомендациям. В данной работе также исследовалось одновременное применение гумата калия (К-гумата) с Se. Внесение Se повышало биодоступность N и P в почве и их общую концентрацию в соломе и семенах каждого растения. Концентрации Se были пропорциональны количеству фосфора, обнаруженному в почве (P-почва), но не пропорциональны концентрациям K в семенах (K-растение). Внесение К-гумата с Se увеличивало биодоступную фракцию К-почвы; однако это не увеличило биодоступную фракцию K-соломинки или K-семени. Хотя применение только Se существенно увеличивало выход, одновременное применение K-гумата не дало дополнительного эффекта. Более того, реакция урожайности семян и длины растений не была значимой после внесения Se с калий-гуматом или без него. ОМС и общее содержание фенола были пропорциональны норме внесения Se с К-гуматом и без него. Содержание неферментативных антиоксидантов также было пропорционально концентрации Se, но не пропорционально K-гумату. Концентрация общего Se в почве, растительной соломе и семенах увеличивалась при внесении К-гумата. Кроме того, общие концентрации Cr снижались после применения Se и K-гумата. Концентрация Fe в соломе и семенах варьировала от одной обработки к другой, а концентрация Mn снижалась в ответ на внекорневую подкормку Se и К-гуматом. Концентрацию Zn в соломе и семенах растений снижали при внесении Se в различных концентрациях. Увеличение нормы внесения Se приводило к снижению концентрации Cu в семенах. Напротив, одновременное применение Se и К-гумата увеличивало концентрацию Cu в семенах.
Исследования селена (Se) начались, когда Шварц и Фольц обнаружили, что селен в кормах предотвращает цирроз печени и мышечную дистрофию у крыс1. Благодаря своим антиоксидантным и противораковым свойствам Se выполняет различные функции, например, действует как антиоксидант в растениях2.
Рост растений не зависит от концентрации Se в почве. Однако концентрации Se в продуктах питания человека и кормах для животных имеют важные последствия для здоровья3. Граница между концентрациями Se, отвечающими основным потребностям в питании, и токсичными концентрациями Se узка и зависит от химической формы и условий окружающей среды2. Se может изменять способность растений переносить окислительный стресс, вызванный УФ-излучением, способствовать росту стареющих сеянцев и задерживать старение. Наночастицы Se (SeNP) повлияли на рост сортов арахиса, изменяя фотосинтетические пигменты, общее количество растворимых сахаров, антиоксидантные ферменты (пероксидаза аскорбиновой кислоты, каталаза и пероксидаза), содержание фенолов, общее количество флавоноидов и перекисное окисление липидов. Напротив, условия песчаной почвы повышали толерантность растений после применения SeNP в качестве стрессора или стимулятора4. Применение Se также обратило вспять негативное влияние солености на фотохимическую эффективность2. Применение добавок Se снизило возникновение побочных реакций, вызванных тяжелыми металлами, жарой, ультрафиолетом (УФ)-B, холодом, солевым стрессом и засухой5.
Органические удобрения, такие как гумат калия (КХМ) и фульвокислота калия (BSFA), используются для предотвращения болезней растений, улучшения структуры почвы и повышения уровня питательных веществ в почве6. Было обнаружено, что добавление KHM и BSFA изменило микробные функции, а уровень питательных веществ увеличился в женьшеневой почве6. Кроме того, применение КХМ улучшило прорастание семян, усвоение питательных веществ и рост рассады7.
Se2 > Se1 > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used./p> Se2 > Se1 > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments./p> Se2 > Se1 > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect./p> Se2 > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM./p> Se2 > Se1 > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24./p> Se2 > Se1 > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings./p> Se2 > Se1 > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20./p> Se2 > Se1 > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3 > Se2 > Se1 > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis./p> Se3 > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control > Se3 > Se2 > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2 > Se3 > Se2 > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences./p> Se1 > control > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control > Se3 > Se2 > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21./p> Se2 > Se1 > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control > Se1 > Se3 > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control > Se2 > Se3 > Se1. K-humate addition altered this order to be in the following order: control > Se2 > Se1 > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21./p> Se1 > control > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control > Se3 > Se1 > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25./p> control > Se2 > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3 > Se1 > control > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21./p> Se1 > control > Se3. Concentrations of Zn in oat seeds were reduced by Se supplementation. Increases in Se concentrations from 12 × 10−3 to 88 × 10−3 mM reduced Cu-seed, and Se application with K-humate produced only insignificant increases in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. The additional application of K-humate altered this order to Se3 > Se1 > control > Se2./p>